Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Microb Genom ; 9(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37227264

RESUMEN

Bovine tuberculosis (bTB) is a costly, epidemiologically complex, multi-host, endemic disease. Lack of understanding of transmission dynamics may undermine eradication efforts. Pathogen whole-genome sequencing improves epidemiological inferences, providing a means to determine the relative importance of inter- and intra-species host transmission for disease persistence. We sequenced an exceptional data set of 619 Mycobacterium bovis isolates from badgers and cattle in a 100 km2 bTB 'hotspot' in Northern Ireland. Historical molecular subtyping data permitted the targeting of an endemic pathogen lineage, whose long-term persistence provided a unique opportunity to study disease transmission dynamics in unparalleled detail. Additionally, to assess whether badger population genetic structure was associated with the spatial distribution of pathogen genetic diversity, we microsatellite genotyped hair samples from 769 badgers trapped in this area. Birth death models and TransPhylo analyses indicated that cattle were likely driving the local epidemic, with transmission from cattle to badgers being more common than badger to cattle. Furthermore, the presence of significant badger population genetic structure in the landscape was not associated with the spatial distribution of M. bovis genetic diversity, suggesting that badger-to-badger transmission is not playing a major role in transmission dynamics. Our data were consistent with badgers playing a smaller role in transmission of M. bovis infection in this study site, compared to cattle. We hypothesize, however, that this minor role may still be important for persistence. Comparison to other areas suggests that M. bovis transmission dynamics are likely to be context dependent, with the role of wildlife being difficult to generalize.


Asunto(s)
Mustelidae , Mycobacterium bovis , Tuberculosis Bovina , Animales , Bovinos , Mycobacterium bovis/genética , Mustelidae/microbiología , Irlanda del Norte/epidemiología , Tuberculosis Bovina/microbiología , Genómica
2.
Elife ; 122023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37227428

RESUMEN

Background: Dog-mediated rabies is endemic across Africa causing thousands of human deaths annually. A One Health approach to rabies is advocated, comprising emergency post-exposure vaccination of bite victims and mass dog vaccination to break the transmission cycle. However, the impacts and cost-effectiveness of these components are difficult to disentangle. Methods: We combined contact tracing with whole-genome sequencing to track rabies transmission in the animal reservoir and spillover risk to humans from 2010 to 2020, investigating how the components of a One Health approach reduced the disease burden and eliminated rabies from Pemba Island, Tanzania. With the resulting high-resolution spatiotemporal and genomic data, we inferred transmission chains and estimated case detection. Using a decision tree model, we quantified the public health burden and evaluated the impact and cost-effectiveness of interventions over a 10-year time horizon. Results: We resolved five transmission chains co-circulating on Pemba from 2010 that were all eliminated by May 2014. During this period, rabid dogs, human rabies exposures and deaths all progressively declined following initiation and improved implementation of annual islandwide dog vaccination. We identified two introductions to Pemba in late 2016 that seeded re-emergence after dog vaccination had lapsed. The ensuing outbreak was eliminated in October 2018 through reinstated islandwide dog vaccination. While post-exposure vaccines were projected to be highly cost-effective ($256 per death averted), only dog vaccination interrupts transmission. A combined One Health approach of routine annual dog vaccination together with free post-exposure vaccines for bite victims, rapidly eliminates rabies, is highly cost-effective ($1657 per death averted) and by maintaining rabies freedom prevents over 30 families from suffering traumatic rabid dog bites annually on Pemba island. Conclusions: A One Health approach underpinned by dog vaccination is an efficient, cost-effective, equitable, and feasible approach to rabies elimination, but needs scaling up across connected populations to sustain the benefits of elimination, as seen on Pemba, and for similar progress to be achieved elsewhere. Funding: Wellcome [207569/Z/17/Z, 095787/Z/11/Z, 103270/Z/13/Z], the UBS Optimus Foundation, the Department of Health and Human Services of the National Institutes of Health [R01AI141712] and the DELTAS Africa Initiative [Afrique One-ASPIRE/DEL-15-008] comprising a donor consortium of the African Academy of Sciences (AAS), Alliance for Accelerating Excellence in Science in Africa (AESA), the New Partnership for Africa's Development Planning and Coordinating (NEPAD) Agency, Wellcome [107753/A/15/Z], Royal Society of Tropical Medicine and Hygiene Small Grant 2017 [GR000892] and the UK government. The rabies elimination demonstration project from 2010-2015 was supported by the Bill & Melinda Gates Foundation [OPP49679]. Whole-genome sequencing was partially supported from APHA by funding from the UK Department for Environment, Food and Rural Affairs (Defra), Scottish government and Welsh government under projects SEV3500 and SE0421.


Asunto(s)
Mordeduras y Picaduras , Enfermedades de los Perros , Vacunas Antirrábicas , Rabia , Perros , Animales , Humanos , Rabia/epidemiología , Rabia/prevención & control , Rabia/veterinaria , Trazado de Contacto , Análisis Costo-Beneficio , Vacunas Antirrábicas/genética , Tanzanía/epidemiología , Genómica , Mordeduras y Picaduras/epidemiología , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/prevención & control
3.
Elife ; 112022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36416537

RESUMEN

Transmission of SARS-CoV-2 from humans to other species threatens wildlife conservation and may create novel sources of viral diversity for future zoonotic transmission. A variety of computational heuristics have been developed to pre-emptively identify susceptible host species based on variation in the angiotensin-converting enzyme 2 (ACE2) receptor used for viral entry. However, the predictive performance of these heuristics remains unknown. Using a newly compiled database of 96 species, we show that, while variation in ACE2 can be used by machine learning models to accurately predict animal susceptibility to sarbecoviruses (accuracy = 80.2%, binomial confidence interval [CI]: 70.8-87.6%), the sites informing predictions have no known involvement in virus binding and instead recapitulate host phylogeny. Models trained on host phylogeny alone performed equally well (accuracy = 84.4%, CI: 75.5-91.0%) and at a level equivalent to retrospective assessments of accuracy for previously published models. These results suggest that the predictive power of ACE2-based models derives from strong correlations with host phylogeny rather than processes which can be mechanistically linked to infection biology. Further, biased availability of ACE2 sequences misleads projections of the number and geographic distribution of at-risk species. Models based on host phylogeny reduce this bias, but identify a very large number of susceptible species, implying that model predictions must be combined with local knowledge of exposure risk to practically guide surveillance. Identifying barriers to viral infection or onward transmission beyond receptor binding and incorporating data which are independent of host phylogeny will be necessary to manage the ongoing risk of establishment of novel animal reservoirs of SARS-CoV-2.


The COVID-19 pandemic affects humans, but also many of the animals we interact with. So far, humans have transmitted the SARS-CoV-2 virus to pet dogs and cats, a wide range of zoo animals, and even wildlife. Transmission of SARS-CoV-2 from humans to animals can lead to outbreaks amongst certain species, which can endanger animal populations and create new sources of human infections. Thus, careful monitoring of animal infections may help protect both animals and humans. Identifying which animals are susceptible to SARS-CoV-2 would help scientists monitor these species for outbreaks and viral circulation. Unfortunately, testing whether SARS-CoV-2 can infect different species in the laboratory is both time-consuming and expensive. To overcome this obstacle, researchers have used computational methods and existing data about the structure and genetic sequences of ACE2 receptors ­ the proteins on the cell surface that SARS-CoV-2 uses to enter the cell ­ to predict SARS-COV-2 susceptibility in different species. However, it remained unclear how accurate this approach was at predicting susceptibility in different animals, or whether their correct predictions indicated causal links between ACE2 variability and SARS-CoV-2 susceptibility. To assess the usefulness of this approach, Mollentze et al. started by using data on the ACE2 receptors from 96 different species and building a machine learning model to predict how susceptible those species might be to SARS-CoV-2. The susceptibility of these species had either been observed in natural infections ­ in zoos, for example ­ or had been assessed in the laboratory, so Mollentze et al. were able to use this information to determine how good both their model and previous approaches based on the sequence of ACE2 receptors were. The results showed that while the model was quite accurate (it correctly predicted susceptibility to SARS-CoV-2 about 80% of the time), its predictions were based on regions of the ACE2 receptors that were not known to interact with the virus. Instead, the regions that the machine learning model relied on were ones that tend to vary more the more distantly related two species are. This indicates that existing computational approaches are likely not relying on information about how ACE2 receptors interact with SARS-CoV-2 to predict susceptibility. Instead, they are simply using information on how closely related the different animal species are, which is much easier to source than data about ACE2 receptors. Indeed, the sequences of the ACE2 receptors in many species are unknown and the species for which this information is available come only from a few geographic areas. Mollentze et al. also showed that limiting the predictions about susceptibility to these species could mislead scientists when deciding which species and geographic areas to surveil for possible viral circulation. Instead, it may be more effective and cost-efficient to use animal relatedness to predict susceptibility to SARS-CoV-2. This makes it possible to make predictions for nearly all mammals, while being just as accurate as models based on ACE2 receptor data. However, Mollentze et al. point out that this approach would still fail to narrow down the number of animals that need to be monitored enough for it to be practical. Considering additional factors like how often the animals interact with humans or how prone they are to transmit the virus among themselves may help narrow it down more. Further research is therefore needed to identify the best multifactor approaches to identifying which animal populations should be monitored.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Animales , Humanos , Enzima Convertidora de Angiotensina 2/genética , COVID-19/diagnóstico , COVID-19/genética , Estudios Retrospectivos , SARS-CoV-2/genética , Susceptibilidad a Enfermedades
4.
Viruses ; 14(11)2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36366496

RESUMEN

The cross-species transmission (CST) of pathogens can have dramatic consequences, as highlighted by recent disease emergence events affecting human, animal and plant health. Understanding the ecological and evolutionary factors that increase the likelihood of disease agents infecting and establishing in a novel host is therefore an important research area. Previous work across different pathogens, including rabies virus (RABV), found that increased evolutionary distance between hosts reduces the frequency of cross-species transmission and of permanent host shifts. However, whether this effect of host relatedness still holds for transmission among recently diverged hosts is not well understood. We aimed to ask if high host relatedness can still increase the probability of a host shift between more recently diverged hosts, and the importance of this effect relative to ecological predictors. We first addressed this question by quantifying the CST frequency of RABV between North American bat species within the genus Myotis, using a multi-decade data set containing 128 nucleoprotein (N) RABV sequences from ten host species. We compared RABV CST frequency within Myotis to the rates of CST between nine genera of North American bat species. We then examined whether host relatedness or host range overlap better explains the frequency of CST seen between Myotis species. We found that at the within genus scale, host range overlap, rather than host relatedness best explains the frequency of CST events. Moreover, we found evidence of CST occurring among a higher proportion of species, and CST more frequently resulting in sustained transmission in the novel host in the Myotis dataset compared to the multi-genus dataset. Our results suggest that among recently diverged species, the ability to infect a novel host is no longer restricted by physiological barriers but instead is limited by physical contact. Our results improve predictions of where future CST events for RABV might occur and clarify the relationship between host divergence and pathogen emergence.


Asunto(s)
Quirópteros , Virus de la Rabia , Rabia , Humanos , Animales , Virus de la Rabia/genética , Filogenia , Evolución Biológica
5.
Ecol Evol ; 12(9): e9253, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36091342

RESUMEN

To better understand vector-borne disease dynamics, knowledge of the ecological interactions between animal hosts, vectors, and pathogens is needed. The effects of hosts on disease hazard depends on their role in driving vector abundance and their ability to transmit pathogens. Theoretically, a host that cannot transmit a pathogen could dilute pathogen prevalence but increase disease hazard if it increases vector population size. In the case of Lyme disease, caused by Borrelia burgdorferi s.l. and vectored by Ixodid ticks, deer may have dual opposing effects on vectors and pathogen: deer drive tick population densities but do not transmit B. burgdorferi s.l. and could thus decrease or increase disease hazard. We aimed to test for the role of deer in shaping Lyme disease hazard by using a wide range of deer densities while taking transmission host abundance into account. We predicted that deer increase nymphal tick abundance while reducing pathogen prevalence. The resulting impact of deer on disease hazard will depend on the relative strengths of these opposing effects. We conducted a cross-sectional survey across 24 woodlands in Scotland between 2017 and 2019, estimating host (deer, rodents) abundance, questing Ixodes ricinus nymph density, and B. burgdorferi s.l. prevalence at each site. As predicted, deer density was positively associated with nymph density and negatively with nymphal infection prevalence. Overall, these two opposite effects canceled each other out: Lyme disease hazard did not vary with increasing deer density. This demonstrates that, across a wide range of deer and rodent densities, the role of deer in amplifying tick densities cancels their effect of reducing pathogen prevalence. We demonstrate how noncompetent host density has little effect on disease hazard even though they reduce pathogen prevalence, because of their role in increasing vector populations. These results have implications for informing disease mitigation strategies, especially through host management.

6.
Sci Rep ; 12(1): 10514, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732674

RESUMEN

Disease mapping reveals geographical variability in incidence, which can help to prioritise control efforts. However, in areas where this is most needed, resources to generate the required data are often lacking. Participatory mapping, which makes use of indigenous knowledge, is a potential approach to identify risk areas for endemic diseases in low- and middle-income countries. Here we combine this method with Geographical Information System-based analyses of environmental variables as a novel approach to study endemic anthrax, caused by the spore-forming bacterium Bacillus anthracis, in rural Africa. Our aims were to: (1) identify high-risk anthrax areas using community knowledge; (2) enhance our understanding of the environmental characteristics associated with these areas; and (3) make spatial predictions of anthrax risk. Community members from the Ngorongoro Conservation Area (NCA), northern Tanzania, where anthrax is highly prevalent in both animals and humans, were asked to draw areas they perceived to pose anthrax risks to their livestock on geo-referenced maps. After digitisation, random points were generated within and outside the defined areas to represent high- and low-risk areas, respectively. Regression analyses were used to identify environmental variables that may predict anthrax risk. Results were combined to predict how the probability of being a high-risk area for anthrax varies across space. Participatory mapping identified fourteen discrete high-risk areas ranging from 0.2 to 212.9 km2 in size and occupying 8.4% of the NCA. Areas that pose a high risk of anthrax were positively associated with factors that increase contact with Bacillus anthracis spores rather than those associated with the pathogen's survival: close proximity to inland water bodies, where wildlife and livestock congregate, and low organic carbon content, which may indicate an increased likelihood of animals grazing close to soil surface and ingesting spores. Predicted high-risk areas were located in the centre of the NCA, which is likely to be encountered by most herds during movements in search for resources. We demonstrate that participatory mapping combined with spatial analyses can provide novel insights into the geography of disease risk. This approach can be used to prioritise areas for control in low-resource settings, especially for diseases with environmental transmission.


Asunto(s)
Carbunco , Bacillus anthracis , Animales , Animales Salvajes , Carbunco/microbiología , Brotes de Enfermedades , Ganado/microbiología , Tanzanía/epidemiología
7.
Microb Genom ; 8(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35188453

RESUMEN

Genomic sequencing has revolutionized our understanding of bacterial disease epidemiology, but remains underutilized for zoonotic pathogens in remote endemic settings. Anthrax, caused by the spore-forming bacterium Bacillus anthracis, remains a threat to human and animal health and rural livelihoods in low- and middle-income countries. While the global genomic diversity of B. anthracis has been well-characterized, there is limited information on how its populations are genetically structured at the scale at which transmission occurs, critical for understanding the pathogen's evolution and transmission dynamics. Using a uniquely rich dataset, we quantified genome-wide SNPs among 73 B. anthracis isolates derived from 33 livestock carcasses sampled over 1 year throughout the Ngorongoro Conservation Area, Tanzania, a region hyperendemic for anthrax. Genome-wide SNPs distinguished 22 unique B. anthracis genotypes (i.e. SNP profiles) within the study area. However, phylogeographical structure was lacking, as identical SNP profiles were found throughout the study area, likely the result of the long and variable periods of spore dormancy and long-distance livestock movements. Significantly, divergent genotypes were obtained from spatio-temporally linked cases and even individual carcasses. The high number of SNPs distinguishing isolates from the same host is unlikely to have arisen during infection, as supported by our simulation models. This points to an unexpectedly wide transmission bottleneck for B. anthracis, with an inoculum comprising multiple variants being the norm. Our work highlights that inferring transmission patterns of B. anthracis from genomic data will require analytical approaches that account for extended and variable environmental persistence, as well as co-infection.


Asunto(s)
Carbunco , Bacillus anthracis , Animales , Carbunco/epidemiología , Carbunco/microbiología , Carbunco/veterinaria , Bacillus anthracis/genética , Genómica , Metagenómica , Filogeografía
8.
Parasit Vectors ; 14(1): 509, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593023

RESUMEN

BACKGROUND: Identifying the mechanisms driving disease risk is challenging for multi-host pathogens, such as Borrelia burgdorferi sensu lato (s.l.), the tick-borne bacteria causing Lyme disease. Deer are tick reproduction hosts but do not transmit B. burgdorferi s.l., whereas rodents and birds are competent transmission hosts. Here, we use a long-term deer exclosure experiment to test three mechanisms for how high deer density might shape B. burgdorferi s.l. prevalence in ticks: increased prevalence due to higher larval tick densities facilitating high transmission on rodents (M1); alternatively, reduced B. burgdorferi s.l. prevalence because more larval ticks feed on deer rather than transmission-competent rodents (dilution effect) (M2), potentially due to ecological cascades, whereby higher deer grazing pressure shortens vegetation which decreases rodent abundance thus reducing transmission (M3). METHODS: In a large enclosure where red deer stags were kept at high density (35.5 deer km-2), we used an experimental design consisting of eight plots of 0.23 ha, four of which were fenced to simulate the absence of deer and four that were accessible to deer. In each plot we measured the density of questing nymphs and nymphal infection prevalence in spring, summer and autumn, and quantified vegetation height and density, and small mammal abundance. RESULTS: Prevalence tended to be lower, though not conclusively so, in high deer density plots compared to exclosures (predicted prevalence of 1.0% vs 2.2%), suggesting that the dilution and cascade mechanisms might outweigh the increased opportunities for transmission mechanism. Presence of deer at high density led to shorter vegetation and fewer rodents, consistent with an ecological cascade. However, Lyme disease hazard (density of infected I. ricinus nymphs) was five times higher in high deer density plots due to tick density being 18 times higher. CONCLUSIONS: High densities of tick reproduction hosts such as deer can drive up vector-borne disease hazard, despite the potential to simultaneously reduce pathogen prevalence. This has implications for environmental pathogen management and for deer management, although the impact of intermediate deer densities now needs testing.


Asunto(s)
Borrelia burgdorferi/genética , Ciervos/parasitología , Ixodes/microbiología , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/transmisión , Infestaciones por Garrapatas/veterinaria , Distribución Animal , Animales , Borrelia burgdorferi/fisiología , Femenino , Larva/genética , Larva/microbiología , Masculino , Prevalencia , Roedores/parasitología , Escocia/epidemiología , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/parasitología , Enfermedades Transmitidas por Vectores/transmisión
9.
Viruses ; 13(2)2021 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562073

RESUMEN

The contemporary surge in metagenomic sequencing has transformed knowledge of viral diversity in wildlife. However, evaluating which newly discovered viruses pose sufficient risk of infecting humans to merit detailed laboratory characterization and surveillance remains largely speculative. Machine learning algorithms have been developed to address this imbalance by ranking the relative likelihood of human infection based on viral genome sequences, but are not yet routinely applied to viruses at the time of their discovery. Here, we characterized viral genomes detected through metagenomic sequencing of feces and saliva from common vampire bats (Desmodus rotundus) and used these data as a case study in evaluating zoonotic potential using molecular sequencing data. Of 58 detected viral families, including 17 which infect mammals, the only known zoonosis detected was rabies virus; however, additional genomes were detected from the families Hepeviridae, Coronaviridae, Reoviridae, Astroviridae and Picornaviridae, all of which contain human-infecting species. In phylogenetic analyses, novel vampire bat viruses most frequently grouped with other bat viruses that are not currently known to infect humans. In agreement, machine learning models built from only phylogenetic information ranked all novel viruses similarly, yielding little insight into zoonotic potential. In contrast, genome composition-based machine learning models estimated different levels of zoonotic potential, even for closely related viruses, categorizing one out of four detected hepeviruses and two out of three picornaviruses as having high priority for further research. We highlight the value of evaluating zoonotic potential beyond ad hoc consideration of phylogeny and provide surveillance recommendations for novel viruses in a wildlife host which has frequent contact with humans and domestic animals.


Asunto(s)
Quirópteros/virología , Virus/aislamiento & purificación , Zoonosis/virología , Animales , Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/virología , Heces/virología , Genoma Viral/genética , Humanos , Aprendizaje Automático , Metagenómica , Filogenia , Virus de la Rabia/clasificación , Virus de la Rabia/genética , Virus de la Rabia/aislamiento & purificación , Saliva/virología , Virus/clasificación , Virus/genética
10.
Emerg Infect Dis ; 27(2): 538-546, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33496237

RESUMEN

Lyme disease is usually associated with forested habitats but has recently emerged on treeless islands in the Western Isles of Scotland. The environmental and human components of Lyme disease risk in open habitats remain unknown. We quantified the environmental hazard and risk factors for human tick bite exposure among treeless islands with low and high Lyme disease incidence in the Western Isles. We found a higher prevalence of Borrelia burgdorferi sensu lato-infected ticks on high-incidence than on low-incidence islands (6.4% vs. 0.7%); we also found that residents of high-incidence islands reported increased tick bite exposure. Most tick bites (72.7%) occurred <1 km from the home, including many in home gardens. Residents of high Lyme disease incidence islands reported increasing problems with ticks; many suggested changing deer distribution as a potential driver. We highlight the benefits of an integrated approach in understanding the factors that contribute to Lyme disease emergence.


Asunto(s)
Ciervos , Ixodes , Enfermedad de Lyme , Animales , Humanos , Islas , Enfermedad de Lyme/epidemiología , Ninfa , Escocia/epidemiología , Reino Unido
11.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33397804

RESUMEN

Hepatitis delta virus (HDV) is an unusual RNA agent that replicates using host machinery but exploits hepatitis B virus (HBV) to mobilize its spread within and between hosts. In doing so, HDV enhances the virulence of HBV. How this seemingly improbable hyperparasitic lifestyle emerged is unknown, but it underpins the likelihood that HDV and related deltaviruses may alter other host-virus interactions. Here, we show that deltaviruses diversify by transmitting between mammalian species. Among 96,695 RNA sequence datasets, deltaviruses infected bats, rodents, and an artiodactyl from the Americas but were absent from geographically overrepresented Old World representatives of each mammalian order, suggesting a relatively recent diversification within the Americas. Consistent with diversification by host shifting, both bat and rodent-infecting deltaviruses were paraphyletic, and coevolutionary modeling rejected cospeciation with mammalian hosts. In addition, a 2-y field study showed common vampire bats in Peru were infected by two divergent deltaviruses, indicating multiple introductions to a single host species. One vampire bat-associated deltavirus was detected in the saliva of up to 35% of individuals, formed phylogeographically compartmentalized clades, and infected a sympatric bat, illustrating horizontal transmission within and between species on ecological timescales. Consistent absence of HBV-like viruses in two deltavirus-infected bat species indicated acquisitions of novel viral associations during the divergence of bat and human-infecting deltaviruses. Our analyses support an American zoonotic origin of HDV and reveal prospects for future cross-species emergence of deltaviruses. Given their peculiar life history, deltavirus host shifts will have different constraints and disease outcomes compared to ordinary animal pathogens.


Asunto(s)
Virus de la Hepatitis B/genética , Virus de la Hepatitis Delta/genética , Especificidad del Huésped/genética , Virus Satélites/genética , Animales , Quirópteros/virología , Transmisión de Enfermedad Infecciosa , Variación Genética/genética , Genoma Viral/genética , Hepatitis B/genética , Hepatitis B/transmisión , Hepatitis B/virología , Virus de la Hepatitis B/patogenicidad , Hepatitis D/genética , Hepatitis D/transmisión , Hepatitis D/virología , Virus de la Hepatitis Delta/patogenicidad , Interacciones Huésped-Patógeno/genética , Humanos , Mamíferos/virología , Filogenia , Roedores/virología , Virus Satélites/patogenicidad
12.
Commun Biol ; 4(1): 12, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398025

RESUMEN

Urban expansion can fundamentally alter wildlife movement and gene flow, but how urbanization alters pathogen spread is poorly understood. Here, we combine high resolution host and viral genomic data with landscape variables to examine the context of viral spread in puma (Puma concolor) from two contrasting regions: one bounded by the wildland urban interface (WUI) and one unbounded with minimal anthropogenic development (UB). We found landscape variables and host gene flow explained significant amounts of variation of feline immunodeficiency virus (FIV) spread in the WUI, but not in the unbounded region. The most important predictors of viral spread also differed; host spatial proximity, host relatedness, and mountain ranges played a role in FIV spread in the WUI, whereas roads might have facilitated viral spread in the unbounded region. Our research demonstrates how anthropogenic landscapes can alter pathogen spread, providing a more nuanced understanding of host-pathogen relationships to inform disease ecology in free-ranging species.


Asunto(s)
Virus de la Inmunodeficiencia Felina/genética , Infecciones por Lentivirus/veterinaria , Puma/microbiología , Urbanización , Animales , Colorado/epidemiología , Femenino , Flujo Génico , Infecciones por Lentivirus/epidemiología , Infecciones por Lentivirus/transmisión , Masculino , Filogeografía , Puma/genética
13.
PLoS Negl Trop Dis ; 14(12): e0008940, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33290391

RESUMEN

Wildlife are important reservoirs for many pathogens, yet the role that different species play in pathogen maintenance frequently remains unknown. This is the case for rabies, a viral disease of mammals. While Carnivora (carnivores) and Chiroptera (bats) are the canonical mammalian orders known to be responsible for the maintenance and onward transmission of rabies Lyssavirus (RABV), the role of most species within these orders remains unknown and is continually changing as a result of contemporary host shifting. We combined a trait-based analytical approach with gradient boosting machine learning models to identify physiological and ecological host features associated with being a reservoir for RABV. We then used a cooperative game theory approach to determine species-specific traits associated with known RABV reservoirs. Being a carnivore reservoir for RABV was associated with phylogenetic similarity to known RABV reservoirs, along with other traits such as having larger litters and earlier sexual maturity. For bats, location in the Americas and geographic range were the most important predictors of RABV reservoir status, along with having a large litter. Our models identified 44 carnivore and 34 bat species that are currently not recognized as RABV reservoirs, but that have trait profiles suggesting their capacity to be or become reservoirs. Further, our findings suggest that potential reservoir species among bats and carnivores occur both within and outside of areas with current RABV circulation. These results show the ability of a trait-based approach to detect potential reservoirs of infection and could inform rabies control programs and surveillance efforts by identifying the types of species and traits that facilitate RABV maintenance and transmission.


Asunto(s)
Quirópteros/virología , Reservorios de Enfermedades/virología , Especificidad del Huésped , Virus de la Rabia/fisiología , Rabia/epidemiología , Especificidad de la Especie , Animales , Carnivoría , Rabia/transmisión , Rabia/virología
14.
Proc Natl Acad Sci U S A ; 117(46): 28859-28866, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33122433

RESUMEN

Whether a pathogen entering a new host species results in a single infection or in onward transmission, and potentially an outbreak, depends upon the progression of infection in the index case. Although index infections are rarely observable in nature, experimental inoculations of pathogens into novel host species provide a rich and largely unexploited data source for meta-analyses to identify the host and pathogen determinants of variability in infection outcomes. We analyzed the progressions of 514 experimental cross-species inoculations of rabies virus, a widespread zoonosis which in nature exhibits both dead-end infections and varying levels of sustained transmission in novel hosts. Inoculations originating from bats rather than carnivores, and from warmer- to cooler-bodied species caused infections with shorter incubation periods that were associated with diminished virus excretion. Inoculations between distantly related hosts tended to result in shorter clinical disease periods, which are also expected to impede onward transmission. All effects were modulated by infection dose. Taken together, these results suggest that as host species become more dissimilar, increased virulence might act as a limiting factor preventing onward transmission. These results can explain observed constraints on rabies virus host shifts, describe a previously unrecognized role of host body temperature, and provide a potential explanation for host shifts being less likely between genetically distant species. More generally, our study highlights meta-analyses of experimental infections as a tractable approach to quantify the complex interactions between virus, reservoir, and novel host that shape the outcome of cross-species transmission.


Asunto(s)
Interacciones Microbiota-Huesped/genética , Especificidad del Huésped/fisiología , Rabia/transmisión , Animales , Carnívoros , Quirópteros , Reservorios de Enfermedades/microbiología , Interacciones Microbiota-Huesped/fisiología , Humanos , Filogenia , Rabia/epidemiología , Virus de la Rabia/patogenicidad , Virulencia
15.
Parasit Vectors ; 13(1): 493, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993763

RESUMEN

BACKGROUND: The relationship between environmentally transmitted tick parasites, Ixodes spp., and their main reproductive host, deer, is generally thought to be positive. However, measuring host abundance and density directly can be challenging and indirect methods are often used. The observed relationship between the parasite and host may be affected by sampling scale and season, which could lead to different inferences being made. Here, we aimed to test the effect of sampling scale and season on the relationship between density of deer and the density of questing Ixodes ricinus nymphs. METHODS: The density of deer (primarily Dama dama) was estimated using line transect distance sampling of deer dung quantified in different seasons (winter and summer) and measured at three different nested scales (site, transect and observation level). Questing nymph density was measured using blanket drag methods and estimates were calculated at the same scales as deer density estimates. General linear models were used to evaluate the relationship between questing nymphs, deer density and other environmental variables at each sampling scale and each season deer density was measured at. RESULTS: While a positive relationship between deer density and questing nymph density was detected at the site and transect scale, no relationship was apparent at the observation level. This was likely due to increased variation and reduced precision of deer dung counts at the finest sampling scale. Seasonal changes in deer populations were observed likely reflecting seasonal shifts in habitat usage. The summer estimates of deer density explained questing nymph density whereas winter estimates did not. CONCLUSIONS: Our results show that the scale of sampling can affect the detectability of the positive association between host and vector species. Furthermore, such associations can be obscured if hosts exhibit seasonal changes in habitat use. Thus, both sampling scale and season are important to consider when investigating the relationship between host and vector species.


Asunto(s)
Ciervos/fisiología , Ixodes/fisiología , Infestaciones por Garrapatas/veterinaria , Animales , Ciervos/parasitología , Ecosistema , Interacciones Huésped-Parásitos , Ninfa/parasitología , Densidad de Población , Estaciones del Año , Infestaciones por Garrapatas/parasitología
16.
PLoS Negl Trop Dis ; 14(9): e0008655, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32925904

RESUMEN

Anthrax threatens human and animal health, and people's livelihoods in many rural communities in Africa and Asia. In these areas, anthrax surveillance is challenged by a lack of tools for on-site detection. Furthermore, cultural practices and infrastructure may affect sample availability and quality. Practical yet accurate diagnostic solutions are greatly needed to quantify anthrax impacts. We validated microscopic and molecular methods for the detection of Bacillus anthracis in field-collected blood smears and identified alternative samples suitable for anthrax confirmation in the absence of blood smears. We investigated livestock mortalities suspected to be caused by anthrax in northern Tanzania. Field-prepared blood smears (n = 152) were tested by microscopy using four staining techniques as well as polymerase chain reaction (PCR) followed by Bayesian latent class analysis. Median sensitivity (91%, CI 95% [84-96%]) and specificity (99%, CI 95% [96-100%]) of microscopy using azure B were comparable to those of the recommended standard, polychrome methylene blue, PMB (92%, CI 95% [84-97%] and 98%, CI 95% [95-100%], respectively), but azure B is more available and convenient. Other commonly-used stains performed poorly. Blood smears could be obtained for <50% of suspected anthrax cases due to local customs and conditions. However, PCR on DNA extracts from skin, which was almost always available, had high sensitivity and specificity (95%, CI 95% [90-98%] and 95%, CI 95% [87-99%], respectively), even after extended storage at ambient temperature. Azure B microscopy represents an accurate diagnostic test for animal anthrax that can be performed with basic laboratory infrastructure and in the field. When blood smears are unavailable, PCR using skin tissues provides a valuable alternative for confirmation. Our findings lead to a practical diagnostic approach for anthrax in low-resource settings that can support surveillance and control efforts for anthrax-endemic countries globally.


Asunto(s)
Enfermedades de los Animales/diagnóstico , Carbunco/diagnóstico , Bacillus anthracis/aislamiento & purificación , Pruebas Diagnósticas de Rutina/veterinaria , Recursos en Salud , Animales , Bacillus anthracis/genética , Teorema de Bayes , Pruebas Diagnósticas de Rutina/métodos , Ganado , Microscopía , Reacción en Cadena de la Polimerasa/veterinaria , Sensibilidad y Especificidad , Coloración y Etiquetado/veterinaria , Tanzanía , Flujo de Trabajo
17.
PLoS Negl Trop Dis ; 14(9): e0008133, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32925939

RESUMEN

The emergence and spread of tick-borne arboviruses pose an increased challenge to human and animal health. In Europe this is demonstrated by the increasingly wide distribution of tick-borne encephalitis virus (TBEV, Flavivirus, Flaviviridae), which has recently been found in the United Kingdom (UK). However, much less is known about other tick-borne flaviviruses (TBFV), such as the closely related louping ill virus (LIV), an animal pathogen which is endemic to the UK and Ireland, but which has been detected in other parts of Europe including Scandinavia and Russia. The emergence and potential spatial overlap of these viruses necessitates improved understanding of LIV genomic diversity, geographic spread and evolutionary history. We sequenced a virus archive composed of 22 LIV isolates which had been sampled throughout the UK over a period of over 80 years. Combining this dataset with published virus sequences, we detected no sign of recombination and found low diversity and limited evidence for positive selection in the LIV genome. Phylogenetic analysis provided evidence of geographic clustering as well as long-distance movement, including movement events that appear recent. However, despite genomic data and an 80-year time span, we found that the data contained insufficient temporal signal to reliably estimate a molecular clock rate for LIV. Additional analyses revealed that this also applied to TBEV, albeit to a lesser extent, pointing to a general problem with phylogenetic dating for TBFV. The 22 LIV genomes generated during this study provide a more reliable LIV phylogeny, improving our knowledge of the evolution of tick-borne flaviviruses. Our inability to estimate a molecular clock rate for both LIV and TBEV suggests that temporal calibration of tick-borne flavivirus evolution should be interpreted with caution and highlight a unique aspect of these viruses which may be explained by their reliance on tick vectors.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/genética , Evolución Molecular , Genoma Viral , Animales , Línea Celular , Cricetinae , Virus de la Encefalitis Transmitidos por Garrapatas/clasificación , Encefalitis Transmitida por Garrapatas/virología , Genética de Población , Metagenómica , Filogenia , Análisis de Secuencia de ARN , Ovinos , Reino Unido
18.
Wellcome Open Res ; 5: 3, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32090172

RESUMEN

Genomic surveillance is an important aspect of contemporary disease management but has yet to be used routinely to monitor endemic disease transmission and control in low- and middle-income countries. Rabies is an almost invariably fatal viral disease that causes a large public health and economic burden in Asia and Africa, despite being entirely vaccine preventable. With policy efforts now directed towards achieving a global goal of zero dog-mediated human rabies deaths by 2030, establishing effective surveillance tools is critical. Genomic data can provide important and unique insights into rabies spread and persistence that can direct control efforts. However, capacity for genomic research in low- and middle-income countries is held back by limited laboratory infrastructure, cost, supply chains and other logistical challenges. Here we present and validate an end-to-end workflow to facilitate affordable whole genome sequencing for rabies surveillance utilising nanopore technology. We used this workflow in Kenya, Tanzania and the Philippines to generate rabies virus genomes in two to three days, reducing costs to approximately £60 per genome. This is over half the cost of metagenomic sequencing previously conducted for Tanzanian samples, which involved exporting samples to the UK and a three- to six-month lag time. Ongoing optimization of workflows are likely to reduce these costs further. We also present tools to support routine whole genome sequencing and interpretation for genomic surveillance. Moreover, combined with training workshops to empower scientists in-country, we show that local sequencing capacity can be readily established and sustainable, negating the common misperception that cutting-edge genomic research can only be conducted in high resource laboratories. More generally, we argue that the capacity to harness genomic data is a game-changer for endemic disease surveillance and should precipitate a new wave of researchers from low- and middle-income countries.

20.
R Soc Open Sci ; 7(4): 200288, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32431911

RESUMEN

The colonization of Ireland by mammals has been the subject of extensive study using genetic methods and forms a central problem in understanding the phylogeography of European mammals after the Last Glacial Maximum. Ireland exhibits a depauperate mammal fauna relative to Great Britain and continental Europe, and a range of natural and anthropogenic processes have given rise to its modern fauna. Previous Europe-wide surveys of the European badger (Meles meles) have found conflicting microsatellite and mitochondrial DNA evidence in Irish populations, suggesting Irish badgers have arisen from admixture between human imported British and Scandinavian animals. The extent and history of contact between British and Irish badger populations remains unclear. We use comprehensive genetic data from Great Britain and Ireland to demonstrate that badgers in Ireland's northeastern and southeastern counties are genetically similar to contemporary British populations. Simulation analyses suggest this admixed population arose in Ireland 600-700 (CI 100-2600) years before present most likely through introduction of British badgers by people. These findings add to our knowledge of the complex colonization history of Ireland by mammals and the central role of humans in facilitating it.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...